
MonoGame
Knox Game Design

September 2020

Levi D. Smith

Background

• Open source version of XNA 4 Framework

• C#

• https://www.monogame.net

• Started in 2009 as XNA Touch

Pros

• Handles gamepad input "out of
the box"

• Can publish to many platforms
(Windows, Linux, Playstation 4,
Android)

• Can be used to port XNA games
that will no longer build on
current Windows

• Can use the .NET libraries and
components

• Still actively developed by the
MonoGame community

• No costs; No forced splash
screen

Cons

• No concept of a "scene" or
"room"

• Not made for 3D games in mind

• No built in GUI components like
buttons, text boxes, checkboxes,
sliders, etc

• No key press/button press
event; Must track the previous
keyboard/gamepad state
yourself

• Many things that should be
simple take a lot of setup and
code (asset loading)

Installing MonoGame (Windows)

• Download and install Visual Studio Community if you don't
already have it
• https://visualstudio.microsoft.com/vs/community/

• Install the MonoGame Visual Studio extension
(recommended)
• Extensions > Manage Extensions
• Search for "monogame"
• Click Download button
• Close Visual Studio for it to start
• Click Modify button

• Alternatively, download the package from
https://www.monogame.net/downloads/

• Getting started guide (Visual Studio 2019) -
https://docs.monogame.net/articles/getting_started/1_settin
g_up_your_development_environment_windows.html

Installing MonoGame (Windows)

• Install the following components, using the
Visual Studio Installer (separate application,
not in Visual Studio)
• Modify > Workloads
• For Desktop only

• .NET Core cross-platform development
• .Net Desktop Development

• Add the following for Windows 10/UWP
• Universal Windows Platform development

• Run the following commands from the
command prompt (cmd)
• dotnet tool install --global dotnet-mgcb-editor
• mgcb-editor --register

Creating a New Project

• Create new project in Visual Studio

• Choose MonoGame Cross-Platform
Desktop Application

• Enter a name and select an empty
folder for the project

• If you get a component assembly error,
make sure you have the correct
components installed

Running Your Project

• Build > Build Solution
• It will probably take a while for the

project to build the first time

• Press the green arrow
• Note - if you press the green arrow before building, you may get an error

• You should get a "cornflower blue"
window when the program executes

MonoGame Content Builder

• Manages assets
• Fonts

• Images

• Sounds

• Music

• https://docs.monogame.n
et/articles/tools/mgcb_edi
tor.html

• Double click on Content.mgcb under Content > obj in Solution Explorer
• Note - if you don't see the MonoGame logo next to Content.mgcb, you need

to run the command line steps to install and register the mgcb-editor
• Note - if it opens in a text window, select Open With and select mgcb-editor-

wpf and press Set as Default then press OK
• Due to a bug, you may have to Add MGCB-Editor using the full path

(C:\Users\<username>\.dotnet\tools\.store\dotnet-mgcb-
editor\3.8.0.1641\dotnet-mgcb-
editor\3.8.0.1641\tools\netcoreapp3.1\any\mgcb-editor-wpf.exe) and then
Set as Default

Displaying Text
• In MGCB Editor, press the New Item button
• Enter MyFont for name, Select SpriteFont

Description, and press Create
• Press the Save button and close the window
• Double click the new MyFont.spritefont to

change the properties of the font
• Open the Game1.cs file

• Add a new instance variable
SpriteFont myfont;

• In the LoadContent() method, add the
following

myfont = Content.Load<SpriteFont>("MyFont");

• In the Draw() method, add the following
_spriteBatch.Begin();

_spriteBatch.DrawString(myfont, "Hello World", new
Vector2(100, 100), Color.White);

_spriteBatch.End();

Game Layout

• Constructor (method name same as class) - Called when object is
instantiated

• Initialize - Called on start

• LoadContent - Call on start, used for loading assets/resources

• Update - Called on each frame
• Used to handle input and update game logic

• Don't have to handle sleeping until next update

• Use gameTime to smooth movements (similar to Unity's Time.deltaTime)

• Draw - Called on each frame, Used for drawing to the screen

Input (Keyboard)

• Must track when each key goes
from up to down

• When inputting a string of
characters, must handle adding
each key to string

• Use Keyboard.GetState() to get the
current state of the keyboard

• Use state.IsKeyDown(key) to
determine if a key is pressed

Input (Gamepad)

• Get status of Gamepad button
• GamePad.GetState(PlayerIndex.One).Buttons.<A,

B,X,Y,Start,LeftStick,RightStick>
• Button down equals ButtonState.Pressed
• Button up equals ButtonState.Released

• GetTrigger value
• GamePad.GetState(PlayerIndex.One).Triggers.<Le

ftStick,RightStick>

• Get thumbstick position
• GamePad.GetState(PlayerIndex.One).Thumbstick

s.<Left,Right>.<X,Y>

Input (Mouse)

• Get mouse position
• Mouse.GetState().<X,Y>

• Get button pressed/released
• Mouse.GetState().<Left,Middle,Right>Button ==

ButtonState.Pressed

• Get mouse wheel position
• Mouse.GetState().ScrollWheelValue (integer)

• Note - need to track previous mouse state if
you need to perform an action on the frame
a button was clicked

Number Guessing Game
• Store secret number and guess count as integers

• Make new Random object, then call Next() with
the range of the secret number

• Store the guess input and result as a string

• Track game over state as a bool

• Create restart method to reset variables

• Increment guess count on each guess

• Set result to "Higher" or "Lower" based on the
guess value

Displaying Images

• Start the MGCB Editor by double clicking Content.mgcb
in the Solution Explorer
• Press the Add Existing Item button
• Navigate and select your image file (such as .PNG)
• Press Add to copy the file to the directory
• Press the Save button

• In source code (Game1.cs)
• Add a new instance variable

Texture2D sprSmile;

• In the LoadContent() method, add the following
sprSmile = Content.Load<Texture2D>("smile");

• In the Draw() method, add the following
_spriteBatch.Begin();

_spriteBatch.Draw(sprSmile,new Rectangle(x, y, w,
h), Color.White);

_spriteBatch.End();

Playing Sound
• Start the MGCB Editor by double clicking Content.mgcb

in the Solution Explorer
• Press the Add Existing Item button
• Navigate and select your sound files (such as .WAV)
• Press Add to copy the file to the directory (can shift + click to

add multiple files at the same time)
• Press the Save button

• In source code (Game1.cs)
• Create and load a new SoundEffect object

SoundEffect sound = Content.Load<SoundEffect>("Blip_Select85");

• Play by calling Play() on the SoundEffect object
sound.Play();

Playing Music

• Add music file (MP3, OGG, etc) using MGCB Editor

• Create a Song object
Song mysong;

• Load using Content
mysong = Content.Load<Song>("mus_overworld");

• Note - If using a .wav file, make sure to change Processor to Song

• Play using MediaPlayer
MediaPlayer.Play(mysong);

• Use MediaPlayer.Volume property to set the volume

• Stop playing with MediaPlayer.Stop()

Simple Space Shooter

1. Create Ship class
2. Display Ship object to the

screen

2. Get ship moving
on keypress

3. Stop moving on
key release

4. Add an Enemy class
5. Make Enemy object

move back and forth

6. Add Bullet object
7. Instantiate new

bullet on keypress
at Ship location

8. Detect collision
between bullet
and enemy

9. Set enemy and
bullet alive flags
to false on
collision

10. Detect collision
between enemy
and ship

11. Set ship alive flag
to false on
collision

12. Convert single enemy
instance into List of enemies

13. Add Game Over state
14. Add points system
15. Add sound effects

and music
16. Add effect when

enemy or ship is
killed

From XNA to MonoGame

Resources

• Beginning MonoGame
• http://www.geekswithblogs.net/cwilliams/archive/2017/02/06/232974.aspx

• MonoGame Tutorial
• https://gamefromscratch.com/monogame-tutorial-series/

