
SDL
(Simple DirectMedia Layer)

with C

Knoxville Game Design

December 2019

Levi D. Smith

SDL Overview

• Created by Sam Lantinga (Blizzard, Valve, World of Warcraft)

• Bindings for several languages (C, Ruby, Python, Lua, C#, etc)

• First release 1998, Latest release July 2019

Games using SDL

Also many Linux ports!

Pros and Cons (SDL with C)

• Pros
• Low level control
• Only use what you need
• Fast (compile times)
• Small executables for small games
• Free (zlib license)
• Multi-platform (Windows, Mac, Linux, …)
• 2D and 3D

• Cons
• Complex setup and API (compared to Unity, GameMaker, etc)
• Possible memory leaks / No garbage collection
• Most game frameworks/engines hide the messy details
• Anything aside the basic operations requires additional libraries

Getting Started

• Download development libraries from libsdl.org
• These examples will use the MingGW libraries for

Windows

• SDL2-2.0.10-mingw.tar.gz

• Download and install MinGW
• http://mingw.org/

• In MinGW Installation Manager, ensure that
mingw32-gcc-bin is selected and installed

• Run MinGW\msys\1.0\msys.bat

http://mingw.org/

Test Your C Compiler

• Create a simple “Hello World” program

• Compile it with GCC

• Should create an executable in the working
directory

• Some virus software may flag the executable,
so restore it if needed

C differences from other Languages

• No const, #define for constants
• No bool, use int and define TRUE/FALSE constants to 1/0

• if / while statements – expression evaluation to 1 is true; evaluation
to 0 is false

• Note - Returning 0 is success, non-zero is failure

• Pointers / Structures instead of Objects / References
• Define function prototypes to avoid compile time errors
• Structs can hold multiple data types like an object
• No List / Vector, but you can make your own linked lists with

pointers
• Don’t assume that variables are initialized to 0 / FALSE
• char * instead of string
• No inheritance / subclasses

C Pointers

• int *p – Create a pointer to an int

• p – The address of p in memory

• *p – The value that p is pointing at

• Use malloc / free in stdlib.h to allocate and free
memory

• dereferencing a NULL pointer is bad (core
dumps)

• Assigning value larger than allocated memory is
bad (segmentation faults)

• Use sizeof(<type>) to get the amount of memory
required for data type

• Use &e to get the address of a non-pointer
variable

• SDL has it’s own memory allocation methods, but
you still need to know how to work with pointers

Setting up SDL libraries

• Start MinGW

• Copy the library tar file to a temporary directory

• Extract the tar file

• change to SDL2-2.0.10 directory

• Run “make native”

Creating a window

• Initialize SDL with SDL_Init
• Create a window with

SDL_CreateWindow
• Access the screen surface with

SDL_GetWindowSurface
• Draw a filled rectangle with

SDL_FillRect
• Update with

SDL_UpdateWindowSurface
• Cleanup with

SDL_DestroyWindow
• Exit with SDL_Quit

Displaying Surfaces (“Sprites”)

• Use SDL_LoadBMP to load a bitmap sprite
• Can only load BMP files by default
• Can load PNG with SDL_image library (additional

library that must be installed)
• Can set color key (transparency) with

SDL_SetColorKey
• Recommend magenta (255, 0, 255) for

transparency color

• Draw to the screen surface with
SDL_BlitSurface

• Note – Use SDL_Renderer/SDL_Texture/SDL_RenderCopy
for hardware acceleration (topic for another
time)

Game Loop

• Create a loop that calls SDL_PollEvent(&e), where e is an SDL_Event

• Stop looping when e.type equals SDL_QUIT

• Suggest making an update/draw methods to handle input / drawing

• Check e.type == SDL_KEYDOWN to detect key press

• Use e.key.keysym.sym to get the pressed key

• Add SDL_Delay to keep from tying up CPU
• Calculate delay time with SDL_GetTicks (minus time since last loop)

Moving a Ship

• Create an SDL_Rect to hold x, y position
• Will be used as the destination parameter of

SDL_BlitSurface

• Setting all Rect members (x, y, w, h) is important

• Use SDL_UpdateWindowSurface to update the screen
after finished drawing (double buffering)

• Must clear the screen yourself, otherwise
“smearing” will occur
• SDL_RenderClear, unless redrawing the entire screen

• Struct for holding ship values
• x, y, vel_x, vel_y, isAlive

Adding Enemies and Bullets

• Add an enemy structure
• x, y, health, lifetime, isAlive

• Back and forth movement

• Add a bullet structure
• x, y, isAlive

• Set isAlive to false if its y position is less than zero

• Only draw/update if isAlive is TRUE

• Get things working with one enemy and one
bullet before adding multiples

Collision Detection

• Check collision between bullet and enemy

• Check collision between enemy and ship

• Set isAlive property to FALSE on collision

• Types of collision
• Box/Rectangle

• Circle (Pythagorean, a2+b2=c2)

• Pixel Perfect

• Continuous (fast moving objects)

Very simple box collision

Multiple enemies / bullets

• Can use array, but not optimal
• Array is basically a set of pointers

• Change variable from struct Enemy enemy
to struct Enemy *enemy

• Can dereference the pointer and access
structure member with ->
• struct Enemy *enemy;

• enemy = malloc(sizeof(struct Enemy));

• printf(“x: %d, y: %d\n”, enemy->x, enemy->y);

• enemy->x is the same as (*enemy).x

Linked Lists

• Similar to Vectors/List collections

• Reference to the head of the list

• Each element has a pointer to the next element

• Iterate through the remaining elements of the list
• Stop when the next element is NULL

• Add elements by iterating to the end of the list and setting the next
element

• Remove an element by pointing the previous element to the next, and then
free’ing the element to be removed

• Use void * pointer for anonymous data types (must cast when accessing)

Drawing Text

• Download the Windows MinGW development library
• https://www.libsdl.org/projects/SDL_ttf/
• SDL2_ttf-devel-2.0.15-mingw.tar.gz

• Run make native from the extracted directory

• Compile with
• gcc -o test_game test_game.c `sdl2-config --cflags --
libs` -lSDL2_ttf

• Test by adding #include <SDL_ttf.h> and TTF_Init()
to your game

• SDL_ttf docs - https://www.libsdl.org/projects/SDL_ttf/docs/index.html

• Be sure to free your text surfaces to prevent memory leak
• Check memory usage in Task Manager
• More efficient to use one surface/texture will all characters, instead of allocating a

new image on each draw

• Build a string with sprintf (from string.h library)

https://www.libsdl.org/projects/SDL_ttf/
https://www.libsdl.org/projects/SDL_ttf/docs/index.html

Sound and Music

• Use SDL_mixer to load and play audio
• Download the MinGW development libraries from

https://www.libsdl.org/projects/SDL_mixer/
• Extract SDL2_mixer-devel-2.0.4-mingw.tar.gz
• make native
• Add –lSDL2_mixer to compile flags
• Add #include <SDL_mixer.h> to source code

• Mix_OpenAudio to initialize audio

• Mix_LoadWAV to load files (.wav files only)

• Mix_PlayMusic to play music

• Mix_PlayChannel to play sound

https://www.libsdl.org/projects/SDL_mixer/

Distributing Your SDL Game

• Package your exe, image files (bmp), and SDL2.dll
• Use the SDL2.dll SDL2-2.0.10-win32-x86.zip

• Include any other DLLs. Use runtime libraries (such as SDL2_ttf.dll, zlib1.dll,
libfreetype-6.dll from SDL2_ttf-2.0.15-win32-x86.zip)

• Include any TTF font files and WAV audio files

• How to use 64 bit libraries? Requires MinGW-w64 or Visual Studio?

• Mixing 64 bit libraries with 32 bit executable probably won’t work

Managing Code

• Can put code in multiple files (ship.c, enemy.c, bullet.c, etc)
• Can simulate object oriented programming

• Put init, update, and draw methods in each file

• Method names must be unique (prepend method with type name)

• Use extern to use variables defined in other source files
• Example: extern SDL_Surface *screenSurface;

• Put structure and function prototypes (.h files) so that other files
know structure definitions

• Must #include <SDL.h> and other libraries in every file that
uses them

Reading Files

• Included with stdio.h

FILE *myreader = fopen(“filename.txt”, “r”);

char strLine[64];

fgets(strLine, 64, myreader);

fclose(myreader);

• Access individual characters in a char * using array notation

• Add –mconsole flag to build options to see output

Makefiles

• Can be used to only compile updated files

• Based on dependencies

• Put target at start of line, followed by colon and any dependencies

• Put tab character on next line followed by commands

• Use -c parameter to compile C source into object file

Building on Linux

• Even easier than Windows

• C compiler (gcc) probably already installed

• Install SDL development libraries with sudo
apt

• make linux

$ sudo apt install git

$ git clone https://github.com/gatechgrad/SDLShooter.git

SDLShooter

$ cd SDLShooter

$ apt-cache search ^libsdl # list sdl libraries

$ sudo apt install libsdl2-dev

$ sudo apt install libsdl2-ttf-dev

$ sudo apt install libsdl2-mixer-dev

$ make linux

Random Numbers

• Seed random number generator with
srand(time(NULL));
• Must #include <stdlib.h> and
<time.h>

• Call rand(); to get the next random
integer

• Use modulo operator (%) to constrain
the range

• Use add (+) set set minimum value
• No truly random

• Repeated runs over an small range will return
similar values

• time(NULL)only changes once per second

More Information

• SDL Forums (active) - https://discourse.libsdl.org/

• Documentation Wiki - http://wiki.libsdl.org/FrontPage
• API - http://wiki.libsdl.org/CategoryAPI

https://discourse.libsdl.org/
http://wiki.libsdl.org/FrontPage
http://wiki.libsdl.org/CategoryAPI

Tutorials

• http://lazyfoo.net/tutorials/SDL/index.php

• https://www.tutorialspoint.com/cprogramming/c_structures.htm

• sdltutorials.com

• Game Development with SDL 2.0 -
https://www.youtube.com/watch?v=MeMPCSqQ-34

• https://www.willusher.io/pages/sdl2/

• Linked Lists
• https://www.learn-c.org/en/Linked_lists

• http://cslibrary.stanford.edu/103/LinkedListBasics.pdf

http://lazyfoo.net/tutorials/SDL/index.php
https://www.willusher.io/pages/sdl2/
https://www.learn-c.org/en/Linked_lists

